Application of Sampling Based Model Predictive Control to an Autonomous Underwater Vehicle
نویسنده
چکیده
Unmanned Underwater Vehicles (UUVs) can be utilized to perform difficult tasks in cluttered environments such as harbor and port protection. However, since UUVs have nonlinear and highly coupled dynamics, motion planning and control can be difficult when completing complex tasks. Introducing models into the motion planning process can produce paths the vehicle can feasibly traverse. As a result, Sampling-Based Model Predictive Control (SBMPC) is proposed to simultaneously generate control inputs and system trajectories for an autonomous underwater vehicle (AUV). The algorithm combines the benefits of sampling-based motion planning with model predictive control (MPC) while avoiding some of the major pitfalls facing both traditional sampling-based planning algorithms and traditional MPC. The method is based on sampling (i.e., discretizing) the input space at each sample period and implementing a goal-directed optimization (e.g., A*) in place of standard numerical optimization. This formulation of MPC readily applies to nonlinear systems and avoids the local minima which can cause a vehicle to become immobilized behind obstacles. The SBMPC algorithm is applied to an AUV in a 2D cluttered environment and an AUV in a common local minima problem. The algorithm is then used on a full kinematic model to demonstrate the benefits.
منابع مشابه
Identification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملOPTIMIZED FUZZY CONTROL DESIGN OF AN AUTONOMOUS UNDERWATER VEHICLE
In this study, the roll, yaw and depth fuzzy control of an Au- tonomous Underwater Vehicle (AUV) are addressed. Yaw and roll angles are regulated only using their errors and rates, but due to the complexity of depth dynamic channel, additional pitch rate quantity is used to improve the depth loop performance. The discussed AUV has four aps at the rear of the vehicle as actuators. Two rule bases...
متن کاملModel predictive control for autonomous underwater vehicle
Research on the autonomous underwater vehicles (AUVs) has been gaining more interest in the recent past. AUVs have been envisioned as a cost effective and safe solution for various underwater missions including but are not limited to underwater scientific test-bed, deep oceanic surveillance, environmental monitoring and underwater structures inspection. The control for such autonomous vehicles,...
متن کاملAutonomous Underwater Vehicle Hull Geometry Optimization Using a Multi-objective Algorithm Approach
Abstarct In this paper, a new approach to optimize an Autonomous Underwater Vehicle (AUV) hull geometry is presented. Using this methode, the nose and tail of an underwater vehicle are designed, such that their length constraints due to the arrangement of different components in the AUV body are properly addressed. In the current study, an optimal design for the body profile of a torpedo-shaped...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011